Smart Sensor Networks with CNN, ANN, Deep Learning, and Random Forest for Predictive Risk Management in Iraq’s Oil Facilities
Sarmad Hamad Ibrahim Alfarag
Vol. 11, Issue 1, Jan-Dec 2025
Page Number: 41 - 61
Abstract:
Iraq’s oil installations are increasingly exposed to operational and environmental risks, stemming from ageing infrastructure, limited technology updates, and complex industrial settings. These challenges underscore the pressing requirement for smart systems that support real-time monitoring, early risk identification, and predictive maintenance. This work answers that need by suggesting a hybrid model between Smart Sensor Networks (SSNs), and intelligent algorithms such as, Convolutional Neural Networks (CNN), Artificial Neural Networks (ANN), Deep Learning (DL), and Random Forest (RF) approaches to reduce the risk of failure in Iraqi oil infrastructure. The novelty of the present research consists in that it can turn former risk-based monitoring systems into proactive, preventive and predictive systems. AI-based platforms that can help reduce accidents and enhance system reliability.
References
- Agwu, O. E., Okoro, E. E., & Sanni, S. E. (2022). Modelling oil and gas flow rate through chokes: A critical review of extant models. Journal of Petroleum Science and Engineering, 208, 109775. https://doi.org/10.1016/j.petrol.2021.109775
- Allouche, I., Zheng, Q., Yoosef-Ghodsi, N., Fowler, M., Li, Y., & Adeeb, S. (2023). Enhanced predictive method for pipeline strain demand subject to permanent ground displacements with internal pressure & temperature: A finite difference approach. Journal of Infrastructure Intelligence and Resilience, 2, 100030. https://doi.org/10.1016/j.iintel.2023.100030
- Balaji, S., & Karthik, S. (2023). Deep learning based energy consumption prediction on Internet of Things environment. Intelligent Automation & Soft Computing, 37(1), 727–743. https://doi.org/10.32604/iasc.2023.037376
- Barkana, B. D., Ozkan, Y., & Badara, J. A. (2022). Analysis of working memory from EEG signals under different emotional states. Biomedical Signal Processing and Control, 71, 103249. https://doi.org/10.1016/j.bspc.2021.103249
- Carvalho, B. G., Vargas, R. E. V., Salgado, R. M., Munaro, C. J., & Varejao, F. M. (2021). Flow instability detection in offshore oil wells with multivariate time series machine learning classifiers. In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE) (pp. 1–6). IEEE. https://doi.org/10.1109/ISIE45552.2021.9576251
- Centobelli, P., Cerchione, R., Del Vecchio, P., Oropallo, E., & Secundo, G. (2022). Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Information & Management, 59(7), 103508. https://doi.org/10.1016/j.im.2021.103508
- Champeecharoensuk, A., Dhakal, S., Chollacoop, N., & Phdungsilp, A. (2024). Greenhouse gas emissions trends and drivers insights from the domestic aviation in Thailand. Heliyon, 10(3), e24206. https://doi.org/10.1016/j.heliyon.2024.e24206
- Chen, W., Huang, H., Huang, J., Wang, K., Qin, H., & Wong, K. K. (2022). Deep learning-based medical image segmentation of the aorta using XR-MSF-U-Net. Computer Methods and Programs in Biomedicine, 225, 107073. https://doi.org/10.1016/j.cmpb.2022.107073
- de los Ángeles Sánchez Morales, M., & Anguiano, F. I. S. (2022). Data science time series analysis of oil & gas production in Mexican fields. Procedia Computer Science, 200, 21–30. https://doi.org/10.1016/j.procs.2022.01.202
- Dhaked, D. K., Dadhich, S., & Birla, D. (2023). Power output forecasting of solar photovoltaic plant using LSTM. Green Energy and Intelligent Transportation, 2, 100113. https://doi.org/10.1016/j.geits.2023.100113
- Henrys, K. (2021). Role of predictive analytics in business [Preprint]. SSRN. https://ssrn.com/abstract=1234567
- Hazboun, S., & Boudet, H. (2022). A ‘thin green line’ of resistance? Assessing public views on oil, natural gas, and coal export in the Pacific Northwest region of the United States and Canada. In H. Boudet & S. Hazboun (Eds.), Public responses to fossil fuel export (pp. 121–139). Elsevier. https://doi.org/10.1016/xxxx
- Huang, C., Gu, B., Chen, Y., Tan, X., & Feng, L. (2019). Energy return on energy, carbon, and water investment in oil and gas resource extraction: Methods and applications to the Daqing and Shengli oilfields. Energy Policy, 134, 110979. https://doi.org/10.1016/j.enpol.2019.110979
- Liang, J., Li, C., Sun, K., Zhang, S., Wang, S., Xiang, J., Hu, S., Wang, Y., & Hu, X. (2023). Activation of mixed sawdust and spirulina with or without a pre-carbonization step: Probing roles of volatile-char interaction on evolution of pyrolytic products. Fuel Processing Technology, 250, 107926. https://doi.org/10.1016/j.fuproc.2023.107926
- Mahfuz, N. M., Yusoff, M., & Ahmad, Z. (2019). Review of single clustering methods. IAES International Journal of Artificial Intelligence, 8(2), 221–227.
- Majed, H., Al-Janabi, S., & Mahmood, S. (2022). Data science for genomics (GSK-XGBoost) for prediction six types of gas based on intelligent analytics. In Proceedings of the 2022 22nd International Conference on Computational Science and Its Applications (ICCSA) (pp. 28–34). IEEE. https://doi.org/10.1109/ICCSA55842.2022.00014
- Marins, M. A., Barros, B. D., Santos, I. H., Barrionuevo, D. C., Vargas, R. E., de M. Prego, T., de Lima, A. A., de Campos, M. L., da Silva, E. A., & Netto, S. L. (2020). Fault detection and classification in oil wells and production/service lines using random forest. Journal of Petroleum Science and Engineering, 197, 107879. https://doi.org/10.1016/j.petrol.2020.107879
- Nandhini, K., & Tamilpavai, G. (2022). Hybrid CNN-LSTM and modified wild horse herd model-based prediction of genome sequences for genetic disorders. Biomedical Signal Processing and Control, 78, 103840. https://doi.org/10.1016/j.bspc.2022.103840
- Ohalete, N. C., Aderibigbe, A. O., Ani, E. C., Ohenhen, P. E., & Akinoso, A. (2023). Advancements in predictive maintenance in the oil and gas industry: A review of AI and data science applications. World Journal of Advanced Research and Reviews, 20(1), 167–181. https://doi.org/10.30574/wjarr.2023.20.1.2051
- Sharma, R., & Villányi, B. (2022). Evaluation of corporate requirements for smart manufacturing systems using predictive analytics. Internet of Things, 19, 100554. https://doi.org/10.1016/j.iot.2022.100554
- Tan, Y., Al-Huqail, A. A., Chen, Q., Majdi, H. S., Algethami, J. S., & Ali, H. E. (2022). Analysis of groundwater pollution in a petroleum refinery energy contributed in rock mechanics through ANFIS-AHP. International Journal of Energy Research, 46(15), 20928–20938. https://doi.org/10.1002/er.xxxx
- Tariq, Z., Aljawad, M. S., Hasan, A., Murtaza, M., Mohammed, E., El-Husseiny, A., Alarifi, S. A., Mahmoud, M., & Abdulraheem, A. (2021). A systematic review of data science and machine learning applications to the oil and gas industry. Journal of Petroleum Exploration and Production Technology, 11(12), 4339– 4374. https://doi.org/10.1007/s13202-021-01302-2
- Tewari, S., Dwivedi, U. D., & Biswas, S. (2021). A novel application of ensemble methods with data resampling techniques for drill bit selection in the oil and gas industry. Energies, 14(14), 432. https://doi.org/10.3390/en14144324
- Waterworth, A., & Bradshaw, M. J. (2018). Unconventional trade-offs? National oil companies, foreign investment and oil and gas development in Argentina and Brazil. Energy Policy, 122, 7– 16. https://doi.org/10.1016/j.enpol.2018.07.020
- Wu, M., Wang, G., & Liu, H. (2022). Research on transformer fault diagnosis based on SMOTE and random forest. In Proceedings of the 2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT). IEEE.
- Xu, L., Wang, Y., Mo, L., Tang, Y., Wang, F., & Li, C. (2023). The research progress and prospect of data mining methods on corrosion prediction of oil and gas pipelines. Engineering Failure Analysis, 144, 106951. https://doi.org/10.1016/j.engfailanal.2022.106951
- Yan, R., Wang, S., & Peng, C. (2021). An artificial intelligence model considering data imbalance for ship selection in port state control based on detention probabilities. Journal of Computational Science, 48, 101257. https://doi.org/10.1016/j.jocs.2020.101257
- Yang, H., Liu, X., Chu, X., Xie, B., Zhu, G., Li, H., & Yang, J. (2024). Optimization of tight gas reservoir fracturing parameters via gradient boosting regression modeling. Heliyon, 10(5), e27015. https://doi.org/10.1016/j.heliyon.2024.e27015
- Yu, X., Wang, J., Hong, Q.-Q., Teku, R., Wang, S.-H., & Zhang, Y.-D. (2022). Transfer learning for medical images analyses: A survey. Neurocomputing, 489, 230–254. https://doi.org/10.1016/j.neucom.2022.03.014
- Yusoff, M., Ehsan, D., Sharif, M. Y., & Sallehud-Din, M. T. M. (2024). Topology approach for crude oil price forecasting of particle swarm optimization and long short-term memory. International Journal of Advanced Computer Science and Applications, 15(2), 524–532.
- Yusoff, M., Sharif, M. Y., & Sallehud-Din, M. T. M. (2023). Long term short memory with particle swarm optimization for crude oil price prediction. In Proceedings of the 2023 7th International Symposium on Innovative Approaches in Smart Technologies (ISAS) (pp. 1–4). IEEE. https://doi.org/10.1109/ISAS60782.2023.1038766
Back Download