

139

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

INTERNATIONAL JOURNAL OF

INNOVATIONS IN APPLIED SCIENCES

AND ENGINEERING

e-ISSN: 2454-9258; p-ISSN: 2454-809X

Performance Tuning: AI Analyse Historical

Performance Data, Identify Patterns, And Predict

Future Resource Needs

Padmaja Pulivarthy

Samsung Semiconductor

Sr software engineer Architect

IT Infrastructure, Austin, Texas, USA

Paper Received: 03rd August, 2022; Paper Accepted: 24th September,

2022; Paper Published: 04th November, 2022

How to cite the article:

Padmaja Pulivarthy,

Performance Tuning: AI

Analyse Historical

Performance Data, Identify

Patterns, And Predict Future

Resource Needs, IJIASE,

January-December 2022, Vol

8; 139-155

140

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

INTRODUCTION

Because SQL optimisation directly affects

the effectiveness of database queries, it is

essential for database system performance.

This research provides an overview of query

performance-enhancing SQL optimisation

methods. It discusses conventional

procedures, the importance of SQL

optimisation, and how various approaches

affect query performance.

Large datasets in big database systems are

necessary in today's complex world to handle

a variety of queries, from straightforward

ones like "finding the address of a person

with SSN 123-456789" to more intricate ones

like "finding the average salary of all

employed married men in California between

the ages of 30 and 39 who earn less than their

wives." These queries must be answered

quickly to increase productivity and

guarantee service quality. Database research

continues to focus heavily on query

optimization. Modern database systems

include a software optimizer that handles

query optimization. In database systems,

queries extract particular tuples or data

depending on predefined conditions.

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

ABSTRACT

Database sizes are increasing, according to recent trends; therefore, larger databases that can be expanded

for improvements in the future without sacrificing performance are required. The way SQL queries are

structured has a significant impact on how well they execute. A set of formatting guidelines is presented

in this document to optimise SQL queries. As part of our methodology, we determine whether the query

requiring filtration requires indexing particular columns. Our suggested methodology seeks to optimise

user SQL queries and reduce query execution time by minimising excessive use of data and columns.

This study covers the importance of query optimisation and popular approaches and thoroughly reviews

SQL optimisation strategies to improve database query efficiency.

141

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

Fig. 1 DBMS architecture

RELATED WORK

In their study [1], Ramesh and Subramanian

address the significance of SQL query

optimization for enhanced performance.

They summarize several optimization

methods that minimize disc I/O operations,

lower CPU use, and improve memory

utilization, like indexing, partitioning, and

caching. Along with discussing query

assessment metrics, they go into great detail

on each one, including response time and

throughput. According to their research,

optimization strategies significantly improve

query performance.

A thorough analysis of SQL query

optimisation strategies is provided in Zhu and

Zhang's [2] study, highlighting the

importance of query optimisation in database

systems. They describe how query

optimisation is impacted by data distribution,

query complexity, and database size. The

survey's significant findings are outlined in

the article, which also recommends that

future studies concentrate on creating novel

142

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

optimisation strategies and enhancing the

effectiveness of already-existing ones.

The authors of the paper [3] provide a novel

method of query graph-based SQL query

optimisation. Query graphs are visual

depictions of SQL queries that help

streamline query execution by pointing out

unnecessary calculations. Their method can

find similar sub-expressions and reduce the

number of join operations needed to

complete the query by examining the query

graph. The study provides an experimental

assessment of their optimisation method on a

collection of SQL databases, summarises the

results, and recommends that future research

concentrate on creating query graphs more

quickly and optimising the process even

more.

The authors of the paper [4] suggest a novel

method for improving SQL query

performance using adaptive query

processing. Their method uses runtime

statistics to modify query plans and boost

speed dynamically, in contrast to typical

query optimisation strategies that are static

and unable to react to changes in data or

query patterns. The authors experimentally

evaluate the approach on a set of SQL

queries, with each query's execution time and

query plan size being measured. Their

findings emphasise the shortcomings of

conventional static optimisation strategies

and the promise of using runtime statistics to

alter query plans, indicating that this adaptive

strategy can significantly increase query

performance in dynamic contexts. For

database system researchers and

practitioners, this study offers insightful

information.

In their study [5], Zhang and Liu present a

novel method for SQL query optimisation

through machine learning approaches. The

authors clarify that conventional methods of

query optimization may not always yield

optimal outcomes because they depend on

heuristics. Their method creates more

accurate query plans by using machine

learning algorithms to learn from query

execution data. They provide a summary of

their research and conclude that their strategy

can greatly enhance SQL query performance.

The paper's authors [6] describe a technique

for SQL query optimisation in relational

databases based on machine learning. To

train a machine learning model that predicts

query execution time, they gather query

execution data. Next, to reduce execution

time, the trained model creates query

strategies. The authors show the potential of

machine learning techniques for query

143

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

optimisation in relational databases by

evaluating their method on a set of SQL

queries and reporting gains in query

efficiency.

In this study, Bhatia and Kaur [7] suggest a

method to enhance the effectiveness of SQL

query processing in cloud data warehouses.

The authors use a heuristic-based approach in

conjunction with query rewriting techniques

to optimise SQL queries. They report notable

gains in query performance when comparing

the performance of their method to that of

conventional query optimisation strategies.

The study emphasises the value of query

optimisation in cloud data warehouses, which

are becoming increasingly common because

of their affordability and scalability.

Khandelwal et al. [8] compare the efficiency

of several SQL query optimisation strategies

in significant data contexts. They discover

that query optimisation greatly enhances

query performance, with materialised views

being the least efficient method for some

datasets and indexing being the most efficient

for others. The paper advises practitioners on

choosing the best optimisation strategy for a

specific dataset and delivers insightful

information about the advantages and

disadvantages of each methodology.

The authors of the paper [9] provide a method

for utilising AI approaches to increase the

efficiency of query execution in SQL

database management systems. They use a

mix of artificial intelligence (AI) techniques,

such as fuzzy logic and neural networks, to

forecast a particular query's best action.

Compared to conventional query

optimisation strategies, the study reports

considerable gains in query performance

after evaluating the efficacy of their approach

on two big datasets. This work establishes a

foundation for future research in this field

and emphasises the potential of AI-based

methods for query optimisation.

In this paper by Munot, Patil, and Pathak

[10], many strategies for optimising SQL

queries are covered, such as indexing, query

restructuring, materialised views, and query

caching. The writers also stress the value of

creating effective plans for query execution

and the advantages of utilising tools such as

SQL Profiler and Query Analyzer.

Researchers and database management

system practitioners will find this paper

helpful since it offers an overview of

fundamental SQL procedures.

The authors of the paper [11] suggest a

unique method for optimizing SQL queries

by utilizing Just-In-Time (JIT) compilation.

144

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

They outline their system's architecture,

which is made up of a runtime engine, a JIT

compiler, and a query optimizer. The authors

assess their system against a range of

benchmarks compared to other query

optimization methods currently in use. Their

unified system exhibits encouraging query

performance results and provides a

comprehensive solution suitable for various

applications.

The authors of the paper [12] present a

collection of relational XQuery optimization

methods used in the DB2 database Pathfinder

system. They outline the system's

architecture, which consists of a runtime

system, a query executor, and an optimizer.

Their suggested methods overcome the

drawbacks of the current XQuery

optimization techniques, resulting in notable

improvement.

The paper [13] provides an overview of

optimising correlated SQL queries, which

might be difficult because they require

several passes over the same data. The author

explains the drawbacks of current methods

for optimising correlated subqueries and

suggests a fresh approach that boosts

efficiency with indexing and query rewriting.

The results demonstrate that the proposed

strategy achieves considerable performance

increases over the current techniques.

The writers of the paper [14] offer a thorough

how-to for optimising SQL Server query

performance. They discuss several methods

for debugging query performance problems,

such as examining query plans, locating and

fixing blocking problems, and refining

indexing algorithms. The document is a

useful resource for database administrators

and developers as it covers complex issues,

including memory management, parallelism,

and query execution strategies.

The authors of the paper [15] provide a

thorough how-to for optimising SQL Server

query performance. In addition to covering

complex subjects, the article provides case

studies and real-world examples that directly

apply to the reader's work. For database

administrators and developers trying to

maximise query performance in their SQL

Server systems, it is an invaluable resource.

METHODOLOGY

Practical methods and approaches are

essential to improve database speed without

sacrificing the security or integrity of data.

Optimising database performance guarantees

prompt information retrieval enhances user

satisfaction and helps businesses fulfil

145

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

stringent service-level commitments. This

methodology section provides a detailed

overview of the essential procedures we used

to look into and test several approaches to

improving database performance. It is

intended to keep you updated and involved at

every stage.

Optimizing Execution of Query

Our work focused on query execution

optimisation, a primary method for

improving database speed. Specifically,

indexing was essential to our attempts to

enhance query execution. We created fast-

retrieving data structures by building indexes

on particular or combinations of columns.

With this insightful technique, the database

system could quickly find and retrieve

pertinent data rapidly, decreasing the

requirement for full table scans and the time

it took for queries to respond.

Another effective method for optimising

query execution is caching technologies,

which became a significant area of interest

for our research. We eliminated the need to

constantly get the same data from disc or

carry out laborious computations by storing

frequently used data. Compared to disk-

based storage, the data cached and kept in

memory provided quicker access times. This

method worked incredibly well, giving users

confidence and assurance when queries

showed patterns of repetition or when many

users or applications frequently accessed the

same data. This resulted in significant

improvements in query response times and an

increase in the system's throughput.

Our research also considered the trade-offs

related to query execution optimisation

strategies. Although indexing, caching, and

query rewriting provide notable speed

advantages, they must be carefully

considered (Huong & Hoang, 2022).

Rewriting a query could make managing the

updated questions more challenging and

ensure the application's business logic makes

sense. Indexing required meticulous

maintenance and careful selection of the right

columns to prevent unnecessary overhead.

While using caching, managing cache

consistency and responding to underlying

data updates were needed.

Managing Resource Efficiently

Memory is essential to database operations

because it provides quick and easy access to

data and query execution plans that are often

used. An SQL server's typical execution plan

structure is shown in Figure 2. To make

effective use of the available memory, we

146

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

looked at memory allocation optimisation

strategies. This required giving some thought

to buffer pool sizes, caching strategy, and

memory allocation rules. Our goal in

optimising memory allocation was to reduce

excessive memory overhead and increase the

amount of memory allocated to essential

database functions, enhancing overall

performance.

Another crucial component of our research,

in which you, as database system developers,

researchers, and technical professionals, play

an integral role, is disc I/O optimisation

(Hoseiny Farahabady et al., 2021). As disc

operations are inherently slower than

memory operations, any delays in disc access

can be a significant source of performance

bottlenecks in database systems. To

minimize disc I/O operations and lower

latency, we used techniques such as write-

batching, read-ahead, and intelligent caching.

By carefully configuring and optimizing disc

I/O processes, we were able to dramatically

increase the overall system throughput and

responsiveness.

In an effort to optimise the use of system

resources, we also investigated parallel

processing techniques. The utilisation of

several processors or cores in modern

database systems can greatly enhance

performance by permitting the simultaneous

execution of multiple processes. We looked

into methods for parallel data loading,

parallel indexing, and parallel query

processing. Through task division and

resource distribution, our goal was to take

advantage of parallelism and increase

concurrency. This method increased

throughput and scalability by reducing

overall execution time and making better use

of system resources.

We took any trade-offs into account when

optimising resource management.

Aggressive memory allocation optimisation,

for instance, may raise the possibility of

memory contention or evictions, which

would impair performance. In a similar vein,

extensive parallel processing may result in

extra costs related to synchronisation and

coordination. Therefore, during our analysis,

a careful balance between resource utilisation

and potential downsides was taken into

consideration.

147

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

Fig. 2 Execution plan of SQL Query

Methods for Replication, Sharding, and

Data Partitioning

We investigated several crucial strategies,

including replication, sharding, and

partitioning, to address the problems posed

by growing data quantities.

Large datasets can be efficiently processed in

parallel over numerous computers by

splitting them into smaller, more manageable

portions (Gruenwald & Eich, 1993).

Sharding promotes performance

improvement and horizontal scaling by

distributing data among several nodes or

servers.

Replication mechanisms were also

considered to provide data redundancy, fault

tolerance, and enhanced read efficiency.

Figure 3 demonstrates data partitioning by

hosting a piece of data based on the month in

a partitioned schema.

.

Fig. 3 Continuous performance testing Process

148

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

The Best Database Normalisation

Practices

According to Mendjoge et al. (2016),

normalisation is a crucial step in database

design that arranges data to remove

redundancies and guarantee data integrity.

We tried to reduce data duplication by using

normalisation criteria and dividing the data

into smaller, logically connected tables. This

method made data management more

accessible, enhanced data consistency and

decreased the storage needed. Normalisation

improved data integrity and gave adequate

storage and retrieval a strong base.

However, we also looked into

denormalization strategies to decrease the

requirement for intricate joins and enhance

query performance. Under some conditions,

denormalizing tables by adding duplicate

data or replicating specific columns might

speed up query performance. This strategy

attempted to cut down on computational

expenses and speed up query response times

by minimising the number of tables joins

needed. But it's essential to understand the

trade-offs of denormalization, like higher

storage needs and possible inconsistent data.

We also looked into data aggregation

techniques. Aggregation can speed up the

execution of queries for analytical tasks by

precomputing and storing summarised data.

We sought to minimise the amount of data

handled during query execution by

aggregating data at various levels of

granularity, such as daily, weekly, or monthly

summaries. This technique made it possible

to retrieve summarised results more quickly,

especially for complicated searches

involving big datasets. Data aggregation has

proven advantageous for reporting

applications and decision support systems,

where quick query response times are critical.

It is critical to realize that the unique

requirements and planned use of the database

must be considered when choosing an

optimization method. The approaches of

normalization, denormalization, and data

aggregation are not mutually exclusive, and a

combination of these methods can be suitable

based on the kind of data and queries that are

anticipated to be run. 3.5. Performance

Monitoring and Tuning

Performance monitoring entails recording

important parameters to fully comprehend

the behaviour of a database system (Bagade

et al., 2012). We concentrated on parameters

like disc I/O rates, CPU consumption, and

query execution time. By gathering and

examining these metrics over time, we were

149

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

able to spot possible performance

bottlenecks, patterns, and anomalies. This

monitoring obtained important information

on the performance and overall health of the

system.

Based on these insights, we investigated

different tuning methods to alleviate

identified bottlenecks and improve system

performance. Modifying database setups to

match particular workload needs and

resource availability was essential. Adjusting

settings for memory allocation, disc

input/output, and query optimisation

improved the ratio of resource usage to

performance.

Query plan optimization is a crucial

component of performance tweaking.

Efficient query execution is ensured by

analyzing and optimizing the execution plans

produced by the database optimizer.

Examining query access pathways, join

techniques, and index utilization is part of

this. After discovering inefficient query

plans, we implemented strategies like index

hints, query rewriting, or adding more

indexes to boost performance. The

optimization of query plans resulted in a

notable decrease in query execution time and

an improvement in system responsiveness.

Performance-enhancing options also assisted

in optimizing the database system. This

involved optimizing parallelism settings, disc

caching strategies, and buffer pool size. We

attempted to align these parameters with

workload characteristics and system

resources to achieve maximum speed

advantages while preserving data security

and integrity.

Continuous procedures involve performance

tweaking and monitoring (Calzarossa et al.,

2021). Performance metrics need to be

regularly tracked, new problems must be

found, and suitable tuning techniques must be

used as workload patterns and system needs

change. The database system is reviewed and

adjusted to ensure it continuously satisfies

performance requirements and changes with

the times.

RESULTS

Our study produced essential results that

broadened our knowledge of how different

optimisation techniques might improve

database performance.

Optimal Query Execution:

- Query Rewriting: We discovered that using

these strategies leads to execution plans that

are more effective and produce faster

response times. Significant speed gains were

150

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

achieved by optimising join sequences and

restructuring queries to remove unnecessary

processes.

- Indexing: Indexed tables showed noticeably

faster data retrieval and query processing, a

significant factor in performance

improvement.

Caching Mechanisms: By keeping

frequently accessed data in memory and

minimising disc I/O operations, caching

mechanisms enhance performance.

Resource Management: - Memory

Allocation: It was determined that efficient

memory allocation was necessary. We

reduced superfluous overhead and

maximised memory utilisation by adjusting

buffer pool sizes and memory settings. This

enhanced system responsiveness and

eliminated memory-related performance

bottlenecks.

- Disc I/O Optimisation: By drastically

reducing disc access times, strategies like

intelligent caching and read-ahead methods

allowed for quicker data retrieval and query

execution.

- Parallel Processing: By utilising system

resources, reaching higher concurrency

levels, and increasing system throughput,

parallel processing approaches proved

beneficial.

Optimising Schemas:

- Normalisation: In order to ensure data

integrity and reduce redundancy,

normalisation was essential. This led to more

effective data storage and retrieval.

- Denormalization: By eliminating the need

for intricate joins, denormalization enhanced

query performance when used sparingly.

 Data Aggregation: Preprocessing and storing

condensed data are two strategies that help

speed up the execution of analytical queries,

particularly in reporting and decision support

applications.

Our research offers valuable insights and

practical suggestions for businesses looking

to maximize database performance.

Organizations can anticipate better

performance, faster query response times,

and increased system throughput by using the

indicated tactics and techniques. These

findings are important for applications

involving large amounts of data, where quick

and effective data processing is essential.

Machine Learning and AI: Combining

machine learning and artificial intelligence

with query optimization opens many

151

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

fascinating possibilities. More sophisticated

algorithms could further improve speed and

minimize the amount of manual labour

needed for optimization by automating

resource allocation, indexing, and query

rewriting.

-Developing Technologies: More research is

necessary to determine how evolving

technologies, like distributed computing

architectures and in-memory databases,

affect performance optimisation. These

technologies present particular opportunities

to reach higher performance and scalability

standards. Investigating their interoperability

with current database systems and

comprehending the performance

implications would be beneficial.

Distributed and Multi-Cloud Contexts:

Another exciting subject is performance

optimization in distributed and multi-cloud

contexts. Given the rising popularity of

distributed databases and cloud computing,

investigating strategies for efficient data

partitioning, load balancing, and replication

over numerous servers or cloud instances is

crucial. Furthermore, improving this topic

requires investigating the trade-offs between

performance, consistency, and availability in

distributed database systems.

CASE STUDY

Among the many vital functions that SQL

query optimisation fulfils are the following:

1. Enhancing Performance: SQL query

optimisation seeks to improve performance

by shortening response times. By reducing

the time, it takes for consumers to seek

information and obtain a response, the entire

user experience is improved.

2. Cutting Down on CPU Execution Time:

SQL query optimization can drastically

reduce a query's CPU execution time. This

increases database operations' efficiency and

yields speedier results.

3. Increasing Throughput: By optimising

SQL queries, we can achieve the same results

with fewer resources, making our operations

more efficient and effective.

Optimised searches consistently yield the

same answers as ordinary queries but with

noticeably faster response times, according to

our examination of Table 1. This

effectiveness saves significant query

processing time.

We ran a particular query on the Phone_List

table in Figure 2, which produced the

pertinent results shown below:

152

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

Fig. 2. Phone_List Table Query Execution1Similar to that, we ran more searches on Figures 3

and 4, producing comparison outcomes that show quicker query processing.

Fig. 3. Table Query Execution2 for Phone List

153

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

Fig. 4. Table Phone_list Query Execution3

Lastly, the query execution time is shown in

Figure 5. It is significantly less than the query

execution time when optimisation techniques

are not used.

Fig. 5. Result of Phone_List Table Query Execution

CONCLUSION

This study provides a thorough discussion of

strategies and tactics for improving database

performance. By implementing these

solutions, institutions may fully leverage

their databases' capabilities, guaranteeing

optimal query execution, resource

management, and outstanding performance

to satisfy the requirements of contemporary

data-driven applications. The paper covers

several key areas:

1. Query Optimization: Practical methods for

enhancing query execution strategies and

reducing response times.

154

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

2. Resource Management: Techniques to

improve system performance and

responsiveness by optimizing memory

allocation, disc input/output, and parallel

processing.

3. Data Partitioning and Schema

Optimisation: Techniques for organizing data

to balance the advantages of normalization

and denormalization, lessen redundancy, and

enhance retrieval.

4. Performance Monitoring and Tuning:

Continuous evaluation and tweaking are

critical to sustain peak performance.

The paper sets itself apart by providing useful

advice and suggestions for implementing

these strategies in addition to theoretical

talks. It acknowledges the potential trade-offs

and difficulties connected with each

optimization technique, enabling

practitioners to make well-informed

decisions based on their unique requirements.

This research also emphasizes the crucial

need to balance data security, integrity, and

performance gains. It underlines that

essential factors like data consistency and

security shouldn't be sacrificed for database

performance optimization. By addressing

these issues, the study provides a solid

framework for obtaining optimal

performance and preserving data security and

integrity.

The article also underscores the ongoing

nature of performance optimization. It's not a

one-time endeavour but a continuous process

that requires ongoing evaluation,

modification, and adaptability to shifting

workload trends and system needs. This

emphasis on the need for a long-term

commitment to continuous improvement

ensures that companies are prepared to

sustain and enhance the performance of their

databases over time.

For companies, database managers,

developers, and researchers trying to

maximise database performance, this report

is an invaluable resource. Through the

application of the delineated methodologies

and strategies, entities can surmount the

obstacles presented by substantial data

quantities, intricate queries, and

heterogeneous workloads, guaranteeing

optimal database performance.

REFERENCES

[1] Jingbo Shao et al., “Database Performance

Optimization for SQL Server Based on Hierarchical

Queuing Network Model,” International Journal of

Database Theory and Application, vol. 8, no. 1, pp.

187–196, 2015. [CrossRef] [Google Scholar]

[Publisher Link]

155

Volume: 8, JANUARY-DECEMBER 2022

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING

[2] Khaled Saleh Maabreh, “Optimizing Database

Query Performance Using Table Partitioning

Techniques,” International Arab Conference on

Information Technology, pp. 1-4, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[3] Jiangang Zhang, “Research on Database

Application Performance Optimization Method,”

Proceedings of the 2016 6th International Conference

on Machinery, Materials, Environment,

Biotechnology and Computer, 2016. [CrossRef]

[Google Scholar] [Publisher Link]

[4] Structure of Database Management System –

Geeks for Geeks, 2020. [Online]. Available:

https://www.geeksforgeeks.org/structure-of-database-

management-system/

[5] Manoj Muniswamaiah, Dr. Tilak Agerwala, and

Dr. Charles Tappert, “Query Performance

Optimization in Databases for Big Data,” 9th

International Conference on Computer Science,

Engineering and Applications, pp. 85-90, 2019.

[CrossRef] [Publisher Link]

[6] John Klein et al., “Performance Evaluation of

NoSQL Databases: A Case Study,” Proceedings of the

1st Workshop on Performance Analysis of Big Data

Systems, pp. 5-10, 2015. [CrossRef] [Google Scholar]

[Publisher Link]

[7] María Murazzo et al., “Database NewSQL

Performance Evaluation for Big Data in the Public

Cloud,” Communications in Computer and

Information Science, vol. 1050, pp. 110–121, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[8] Vamsi Krishna Myalapalli, Thirumala

Padmakumar Totakura, and Sunitha Geloth,

“Augmenting Database Performance via SQL

Tuning,” International Conference on Energy Systems

and Applications, pp. 13-18, 2015. [CrossRef]

[Google Scholar] [Publisher Link]

[9] Abdullah Talha Kabakus, and Resul Kara, “A

Performance Evaluation of In-Memory Databases,”

Journal of King Saud University - Computer and

Information Sciences, vol. 29, no. 4, pp. 520–525,

2017. [CrossRef] [Google Scholar] [Publisher Link]

[10] Sadhana J. Kamatkar et al., “Database

Performance Tuning and Query Optimization,” Data

Mining and Big Data, pp. 3–11, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[11] Xiaoxiao Sun, Bing Jiang, and Xianda He,

“Database Query Optimization Based on Distributed

Photovoltaic Power Generation,” 2nd IEEE Advanced

Information Management, Communicates, Electronic

and Automation Control Conference, pp. 2382-2386,

2018. [CrossRef] [Google Scholar] [Publisher Link]

[12] Mohammad Reza Hoseiny Farahabady et al.,

“Enhancing Disk Input Output Performance in

Consolidated Virtualized Cloud Platforms using a

Randomized Approximation Scheme,” Concurrency

and Computation: Practice and Experience, vol. 34,

no. 2, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

[13] Le Gruenwald, and Margaret H. Eich, “Selecting

a Database Partitioning Technique,” Journal of

Database Management, vol. 4, no. 3, pp. 27–39, 1993.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Neha Mendjoge, Abhijit R. Joshi, and Meera

Narvekar, “Intelligent Tutoring System for Database

Normalization,” International Conference on

Computing Communication Control and Automation,

pp. 1-6, 2016. [CrossRef] [Google Scholar] [Publisher

Link]

[15] Prasanna Bagade, Ashish Chandra, and Aditya B.

Dhende, “Designing Performance Monitoring Tool for

NoSQL Cassandra Distributed Database,”

International Conference on Education and E-

Learning Innovations, pp. 1-5, 2012. [CrossRef]

[Google Scholar] [Publisher Link]

[16] Maria Carla Calzarossa, Luisa Massari, and

Daniele Tessera, “Performance Monitoring

Guidelines,” Companion of the ACM/SPEC

International Conference on Performance

Engineering, pp. 109-114, 2021. [CrossRef]

[Publisher Link]

