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INTRODUCTION  

Dynamic systems are ubiquitous in nature 

and engineering, with applications ranging 

from weather forecasting to robotics and 

finance. Traditionally, differential equations 

have been the cornerstone for modeling such 

systems, offering a rigorous mathematical 

framework to describe the temporal evolution 

of system states (1). However, the increasing 

complexity of modern systems, coupled with 

the availability of large datasets, has 

prompted the exploration of AI techniques to 

complement and enhance traditional 

modeling approaches.AI, particularly 

machine learning (ML), provides powerful 

tools for capturing patterns and making 

predictions from data. When integrated with 

differential equations, AI can improve model 

accuracy, optimize control strategies, and 

solve previously intractable problems (2,3).  

Creating a customized deep learning model 

for global weather forecast using a cubed 

sphere for global precipitation involves a 

combination of advanced techniques in 

numerical weather prediction (NWP) and 

machine learning (4,5). The accuracy of 

forecasted rainfall in NWP systems is 

influenced by accurately representing 

precipitation to prognostic variables. 

However, challenges in physical processes 

and uncertainties in the current system 

necessitate simpler, computationally 

efficient, and cost-effective approaches (6,7). 

Deep learning (DL) has emerged as a 

powerful technology for developing Digital 

Twins (DT), solving composite, nonlinear 

problems by unwrapping non-linearity in 
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ABSTRACT 

Deep learning technology, specifically DLWP-CS, has been proposed for weather prediction using cubed 

spheres in data-driven simulations of global weather fields. For basic fields like temperature and 

geopotential height, DLWP-CS performs admirably, but for complex, non-linear fields like precipitation, 

it is computationally demanding. Precipitation precursors are the input for the modified DLWP-CS 

(MDLWP-CS) technique, which changes the architecture from temporal to spatio-temporal mapping. 

The technique predicts precipitation using a 2-m surface air temperature as a proof of concept. In 

comparison to the GFS output with a one-day lag, the hourly ERA-5 reanalysis used to train the 

MDLWP-CS model outperforms both linear regression and the Global Forecast System (GFS) in daily 

precipitation prediction with a one-day lag. This provides an effective DT framework for quick, high-

fidelity precipitation predictions. 
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neural networks. This, particularly in 

computer vision, has led to efficient solutions 

for recognizing handwritten decodings (4,8). 

Advances in deep learning (DL) have been 

facilitated by the availability of memory-

intensive hardware and open-source Python 

libraries, this reduced entrance barriers 

because they were unavailable at the time 

convolution neural networks were initially 

presented (9). Lately, several initiatives have 

concentrated on the weather forecasting of 

worldwide data fields, including temperature, 

wind, and geopotential height (prognostic 

variables), employing DL as a substrate for 

NWP the most difficult variable to predict, 

worldwide precipitation (diagnostic 

variables), has, nonetheless, seen very few 

attempts at forecasting (10,11).  Furthermore, 

there is a lack of comparison with operational 

products and a depiction of the global 

datasets' spherical shape in the literature 

previously mentioned. Weyn et al. (2019) 

employed Deep Learning Weather Prediction 

(DLWP) data (12) and U-NET to estimate 

500-hPa geopotential height. In a 

reexamination, they employed cubed spheres 

to convert worldwide data and forecast 

temperature at 850 hPa and geopotential 

height at 500 hPa using DLWPCS. Both 

methods use a temporal learning framework 

similar to traditional models, demonstrating 

U-NET's potential for NWP prediction (13). 

The same variables are required for model 

implementation. The researchers aim to 

create a self-sustaining model that is 

independent of existing NWPs, allowing 

recursive input and simulations similar to 

NWPs. They used the six faced cubed sphere 

projection to minimize spherical distortion, 

benefiting from DL and computer vision 

developments. The cubic sphere projection is 

created by transforming the global spherical 

dataset. A temporal mapping approach called 

DLWP-CS has demonstrated encouraging 

results for temperature and geopotential 

height, but it would be more computationally 

demanding for complicated, non-linear fields 

like precipitation (14). Because it depends on 

prognostic environmental co-variables, 

multivariate setups find it 

challenging.Precipitation precursors are 

accepted as input in the modified DLWP-CS 

(MDLWP-CS) technique, which converts the 

U-NET architecture from a univariate to a 

multi-variate spatio-temporal mapping. This 

modification aims to capture linkages from 

simple precursors for precipitation prediction 

while maintaining dynamical scale tele 

connections. 
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METHODOLOGY 

The Deep Learning Weather Prediction 

(DLWP) model uses a U-NET-based deep 

convolutional neural network (CNN) to 

predict the future state of the atmosphere by 

learning from historical weather data. This 

approach, which is similar to temporal 

learning methods like RNN or ARIMA, 

focuses on forecasting geopotential height.  

The model was enhanced with DLWP-CS, 

which applies a cubed sphere (CS) mapping 

to minimize distortions in global data and 

improve forecast stability. By transforming 

spherical data into a cube with six faces, 

DLWP-CS allows for more accurate 

convolution operations, leading to better 

weather predictions. 

DLWP-CS maintains the same variables in 

both input and output, enabling recursive 

simulations similar to Numerical Weather 

Prediction (NWP). It has been shown to 

outperform the European Centre for 

Medium-Range Weather Forecasting's IFS42 

system. 

However, DLWP and DLWP-CS are 

computationally intensive due to their 

multivariate nature, especially when 

predicting variables like precipitation. The 

proposed MDLWP-CS model reduces these 

costs by allowing variable inputs and outputs, 

making it faster and more efficient for real-

time weather prediction. 

The Global Forecast System (GFS) 

operational numerical weather prediction 

model and linear regression are the two 

benchmark models used to assess the 

performance of the MDLWP-CS model. It 

compares day-1 lead projections alone. For 

every grid point on Earth, a linear regression 

model is built that uses the surface air 

temperature to forecast precipitation. Using 

hourly ERA-5 reanalysis data, MDLWP-CS 

and the linear regression model are trained. 

To evaluate the MDLWP-CS model, a 

preliminary test is conducted by using 2-

meter surface air temperature to predict 

precipitation. This approach is chosen due to 

the physical relationship between 

temperature and precipitation, as well as 

computational and storage limitations. Early 

stopping, a unique CubedSphereConv2D 

class for variable mapping, and a unique data 

generator for training, validation, and testing 

are some of the features of the MDLWP-CS 

implementation. The MDLWP-CS 

implementation strategy is described in this 

section. 

DATA PREPROCESSING AND 

COMPUTATIONAL PLATFORM: 

The MDLWP-CS model uses 2-meter surface 

air temperature (input) and precipitation 
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(target) data, normalized and transformed 

into a cubed sphere (CS) mapping. Due to 

hardware limitations, the CS resolution was 

set to 512x512, and data were split into daily 

files. Final preprocessing yielded a 96x96 

resolution per CS face. 

MODEL IMPLEMENTATION AND 

HYPERPARAMETERS: 

Built with Keras and Dask for parallel 

processing, the model uses a learning rate of 

1e-4, the RELU activation function, and early 

stopping to avoid overfitting. Training 

employs a mean squared error loss function 

over 10,000 epochs. The datasets and code 

are publicly available. 

TRAINING, TESTING, AND 

COMPUTATIONAL TIME: 

Training on ERA5 data (1979-2009) took 17-

20 hours per epoch. Validation of data 

showed that global forecasts could be 

generated in about 2 hours for 4 years. The 

trained model outputs predictions much 

faster than traditional NWP systems, 

demonstrating its efficiency. 

RESULTS WITH DISCUSSION 

In order to compare the performance of 

MDLWP-CS with GFS (the operational 

NWP system) and linear regression at day-1 

lead time, the evaluation is conducted 

throughout the boreal summer season (May–

August, or MJJA) for the years 2014–2018. 

The relevant output from the GFS model was 

compared with the test data projections for 

MJJA 2014–2018. Present study compares 

the MDLWP-CS with the GFS projections at 

the day-1 lead, as explained in the 

methodology. When compared to ERA5, it 

can be noted that GFS and MDLWP-CS 

show comparable patterns in mean 

precipitation, however linear regression is 

unable to capture the spatial pattern. 

Furthermore, mean precipitation is 

overestimated by linear regression, 

particularly for land areas. The ERA5, GFS, 

and MDLWP-CS all clearly display the 

intertropical convergence zone (ITCZ), one 

of the key dynamic meteorological aspects. 

In particular, as compared to the ERA5 

reanalysis, MDLWP-CS somewhat 

underestimates the precipitation across the 

tropical regions.Globally, the linear 

regression models exhibit high wet bias. 

While the general pattern of bias between 

MDLWPCS and GFS is similar, in tropical 

regions MDLWP-CS has a dry bias over the 

ocean. There are some noteworthy 

discrepancies over land; for example, 

MDLWP-CS shows a little dry bias over the 

Eastern Pacific, whereas GFS shows a wet 

bias over the Sahel area. Not only that, but 

MDLWP-CSoutperforms GFS in both North 
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and South America.In northern India, 

MDLWPCS has a dry bias, but in southern 

India, it shows a wet bias.  

For the years 2014–2018, the grid-wise 

temporal correlations (Pearson correlation 

coefficients) between the GFS, MDLWP–

CS, and linear regression models and the 

ERA5 reanalysis daily precipitation have 

been calculated. GFS outperforms linear 

regression in terms of skill. However, 

generally, and particularly over land, the 

MDWLP-CS Pearson correlation coefficient 

values are significantly higher than those of 

the benchmark models. 

It is evident that, in every location, MDWLP-

CS correlation coefficient values are 

significantly greater than those of GFS and 

linear regression.The Critical Success Index 

(CSI) (15) and Index of Agreement (IOA) 

(16) are computed for different areas in order 

to further quantify the performance of 

MDWLPCS in comparison to GFS. The 

range of both skill ratings is 0 to 1, with 1 

denoting an ideal forecast and 0 denoting no 

skill at all. The ratio of the total number of 

accurate event forecasts (hits) to the entire 

number of forecasts, including the number of 

misses (hits + false alarms + misses), is used 

to determine the classification skill index 

(CSI) for a given threshold. The number of 

nonevent forecasts (right rejections) has no 

bearing on the CSI. With regard to both 

criteria, MDWLP-CS has a higher CSI than 

GFS. Moreover, MDLWPCS outperforms 

GFS in terms of skill. Because of the cubic 

sphere transformations, MDLWP-CS may 

maintain the world scale teleconnections, and 

these connections improve the model's 

performance. Furthermore, when more 

precipitation precursors (such as lowerlevel 

humidity, wind, and outgoing longwave 

radiation) are employed, the MDLWP-CS's 

proficiency will increase.  

Table 1: Showing Pearson correlation coefficients averaged over different land regions 

Region GFS MDLWP-CS LR 

North Asia .26 .66 .20 

Europe .30 .65 .06 

United states .23 .63 .1 

Central Asia .25 .54 .15 

South Asia .34 .63 .16 
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Table 2: Showing critical success index (for a threshold 0.5mm/day averaged over the land 

regions) 

Region GFS MDLWP-CS 

North Asia .54 .53 

Europe .49 .48 

United states .51 .50 

Central Asia .46 .48 

South Asia .50 .50 

 

Table 3: Showing critical success index (for a threshold 3mm/day averaged over the land regions) 

Region GFS MDLWP-CS 

North Asia .26 .24 

Europe .38 .39 

United states .29 .36 

Central Asia .43 .46 

South Asia .48 .49 

 

Table 4: Showing index of agreement 

Region GFS MDLWP-CS 

North Asia .76 .83 

Europe .82 .72 

United states .81 .85 

Central Asia .80 .66 

South Asia .92 .95 
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CONCLUSION 

Recent efforts have aimed at using deep 

learning (DL) for weather prediction, 

specifically for simulating global weather 

fields as an alternative to traditional 

numerical weather prediction (NWP). 

However, predicting global precipitation 

with DL has been challenging. Building on 

previous work by Weyn et al. (2019, 2020), 

this study advances a DL framework by 

modifying it to incorporate spatio-temporal 

mapping, allowing it to use precipitation 

precursors as inputs. The study demonstrates 

that using 2-meter surface air temperature to 

predict precipitation with the new model, 

MDLWP-CS, yields better results compared 

to linear regression and the operational GFS 

model. This research provides a foundation 

for using DL in multi-scale precipitation 

forecasting and suggests future studies will 

focus on improving predictions for high-

impact rainfall events. 

The MDLWP-CS model outperforms linear 

regression and operational NWP systems in 

predicting daily precipitation, particularly 

over land regions relative to oceans. Its 

performance is attributed to its use of a single 

input, 2 m surface air temperature, with 

precipitation as the target, highlighting the 

importance of surface air temperature in 

precipitation prediction. 

REFERENCES 

1. Baker, N., Alexander, F., Bremer, T., 

Hagberg, A., Kevrekidis, Y., Najm, H., ... & 

Lee, S. (2019). Workshop report on basic 

research needs for scientific machine 

learning: Core technologies for artificial 

intelligence. USDOE Office of Science (SC), 

Washington, DC (United States). 

2. Singh, M., Kumar, B., Rao, S., Gill, S. S., 

Chattopadhyay, R., Nanjundiah, R. S., & 

Niyogi, D. (2021). Deep learning for 

improved global precipitation in numerical 

weather prediction systems. arXiv preprint 

arXiv:2106.12045. 

3. Maher, P., Vallis, G. K., Sherwood, S. C., 

Webb, M. J., & Sansom, P. G. (2018). The 

impact of parameterized convection on 

climatological precipitation in atmospheric 

global climate models. Geophysical 

Research Letters, 45(8), 3728-3736. 

4. Yano JI, Ziemiański MZ, Cullen M, 

Termonia P, Onvlee J, Bengtsson L, Carrassi 

A, Davy R, Deluca A, Gray SL, Homar V. 

Scientific challenges of convective-scale 

numerical weather prediction. Bulletin of the 

American Meteorological Society. 2018 Apr 

1;99(4):699-710. 

5. Zeiler, M. D., & Fergus, R. (2014). 

Visualizing and understanding convolutional 

networks. In Computer Vision–ECCV 2014: 

13th European Conference, Zurich, 

Switzerland, September 6-12, 2014, 

Proceedings, Part I 13 (pp. 818-833). 

Springer International Publishing. 

6. Scher, S., & Messori, G. (2019). Weather and 

climate forecasting with neural networks: 

using general circulation models (GCMs) 

with different complexity as a study 

ground. Geoscientific Model 

Development, 12(7), 2797-2809. 

7. Weyn, J. A., Durran, D. R., & Caruana, R. 

(2019). Can machines learn to predict 



 

126 
 

 

Volume: 8, JANUARY-DECEMBER 2022 

 

INTERNATIONAL JOURNAL OF INNOVATIONS IN APPLIED SCIENCES AND ENGINEERING 

weather? Using deep learning to predict 

gridded 500‐hPa geopotential height from 

historical weather data. Journal of Advances 

in Modeling Earth Systems, 11(8), 2680-

2693. 

8. Weyn JA, Durran DR, Caruana R. Improving 

data‐driven global weather prediction using 

deep convolutional neural networks on a 

cubed sphere. Journal of Advances in 

Modeling Earth Systems. 2020 

Sep;12(9):e2020MS002109. 

9. Mesinger, F. (2008). Bias adjusted 

precipitation threat scores. Advances in 

Geosciences, 16, 137-142. 

10. Willmott, C. J. (1982). Some comments on 

the evaluation of model 

performance. Bulletin of the American 

Meteorological Society, 63(11), 1309-1313. 

11. Reichstein, M., Camps-Valls, G., Stevens, 

B., Jung, M., Denzler, J., Carvalhais, N., & 

Prabhat, F. (2019). Deep learning and process 

understanding for data-driven Earth system 

science. Nature, 566(7743), 195-204. 

12. Xu, L., Chen, N., Chen, Z., Zhang, C., & Yu, 

H. (2021). Spatiotemporal forecasting in 

earth system science: Methods, uncertainties, 

predictability and future directions. Earth-

Science Reviews, 222, 103828. 

13. Fu, M., Fan, T., Ding, Z. A., Salih, S. Q., Al-

Ansari, N., & Yaseen, Z. M. (2020). Deep 

learning data-intelligence model based on 

adjusted forecasting window scale: 

application in daily streamflow 

simulation. Ieee Access, 8, 32632-32651. 

14. Wang, B., Lu, J., Yan, Z., Luo, H., Li, T., 

Zheng, Y., & Zhang, G. (2019, July). Deep 

uncertainty quantification: A machine 

learning approach for weather forecasting. 

In Proceedings of the 25th ACM SIGKDD 

international conference on knowledge 

discovery & data mining (pp. 2087-2095). 

15. Chen, R., Zhang, W., & Wang, X. (2020). 

Machine learning in tropical cyclone forecast 

modeling: A review. Atmosphere, 11(7), 

676. 

16. Alkhayat, G., & Mehmood, R. (2021). A 

review and taxonomy of wind and solar 

energy forecasting methods based on deep 

learning. Energy and AI, 4, 100060. 

 

 

 

 

 

 

 

 

 


